What is Nuclear Waste?
With the expansion of industries to cope with human needs, the use of nuclear energy for the production of electricity has increased substantially to fulfill energy needs. Nuclear power, like all businesses and energy production systems, generates waste material. Externally, nuclear waste resembles the fuel that was fed into the plant — often bundles of tubular metal bars encapsulating uranium grains. Nuclear waste is categorized into three classes based on its radioactivity: low-level, intermediate-level, and high-level.
A significant amount of waste (90 percent of total volume) is made up of just moderately contaminated objects, such as gear and work apparel, and comprises only 1% of overall radioactivity. High-level waste, on the other hand, accounts for just 3% of the total waste volume but contains 95% of total radioactivity.
It is largely made up of used nuclear (also referred to as spent) fuel that has been categorized as waste from nuclear reactions. The majority of the radiation linked with nuclear energy is still retained in the fuel that was used to generate it. As a result, spent fuel is designated as high-level nuclear waste.
Hazards of Nuclear Waste
When a nucleus breaks, a considerable amount of energy is quickly released and transported away by a cooling agent to conduct beneficial work. Energy, on the other hand, persists to be generated for hundreds of years after the atom breaks. The afterglow heat is what renders nuclear waste dangerous.
Unlike most harmful waste, nuclear waste degrades over time, which is highly unusual. Because of these delayed energy releases, nuclear waste is extremely radioactive. It is so dangerous when it initially comes out of the reactor that if a person stood close to it while it was unprotected, the person would get a deadly radiation dosage within a few moments and expire of acute radiation.
Read more: Nuclear Waste Treatment: An Overview